

Wastewater from fish processing industries as carbon source

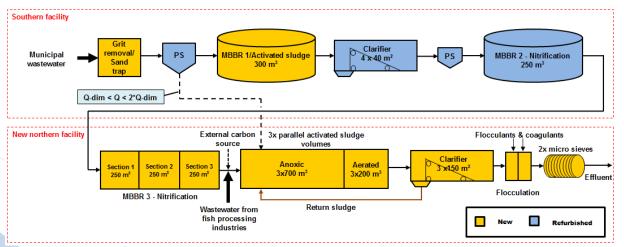
Sebastian Engström & Mark de Blois, H2OLAND AB in cooperation with the municipality of Tjörn

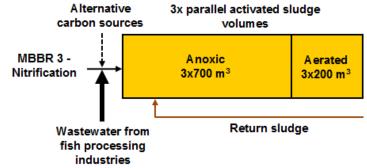
23/9 2019

Extension of the plant

- Centralizing the wastewater treatment of the island of Tjörn, three WWTP will be one
- Increasing load from fish processing industries
- Demand on nitrogen treatment from authorities
- 30 000 PE, design flow: 600 m³/h

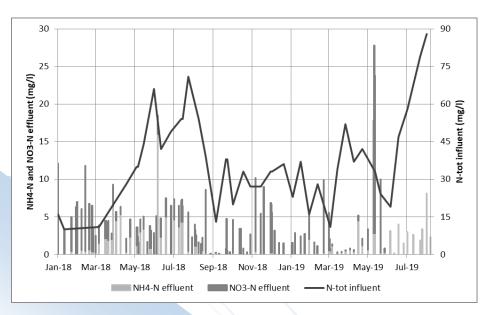
The renovated southern WWTP.


The newly built northern WWTP.


- Post-nitrification & post-denitrification
- Fish processing industry sewage as carbon source

Process scheme of the WWTP of Ängholmen

- Introduced after the nitrification process (no disturbance)
- High levels of dissolved organic substances and low levels of nitrogen and phosphorous
- Average inflow of 25 m³/d. The flow was set to 1 m³/h during the period.


H₂OLAND

Point of introduction of fish processing industry sewage as carbon source

Fish processing industry sewage, 2018										
	COD _{tot}	BOD ₇	P-tot	N-tot	NH ₄ -N					
mg/L	13 700	8 650	39	365	21					
kg/d	350	220	1,0	9,2	0,5					

Denitrification

 Low concentrations of total nitrogen in effluent is achieved

H₂OLAND

 Low effluent concentrations of BOD₇ and ammonium.

- Highly efficient and cheap carbon source
- Fish industry sewage does not interfere with the nitrification process
- Eliminates the need for an external carbon source such as ethanol

Results 2018 – before and after DN										
	Flow	mg COD/L	kg COD/d	mg NO ₃ -N/L	kg NO ₃ -N/d	mg N-tot/L	kg N-tot/d			
To AS (municipal)	3 110	56	175	17	54	20	63			
To AS (industry)	25	13 700	350	-	-	365	9,2			
To AS (mixture)	3 140	167	525	17	54	23	72			
Effluent	3 350	30	86	3,1	8,1	4,4	12			
COD _{ind} /NO ₃ -N _{mun}	6,5 kg COD/kg NO ₃ -N									

Thank you!

Sebastian Engström & Mark de Blois, H2OLAND AB Östra Vattugränd SE-441 30 Alingsås www.h2oland.se sebastian.engstrom@h2oland.se mark.de.blois@h2oland.se